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This paper considers weighted ܩଶ -degree reduction of Bézier curves. Given Bézier curves, degree reduction is an approximative process used to write it as Bézier curves of lower degree. A weight function w [t] = 2t (1‐t), t	∈ [0, 1] is used in degree reducing the Bézier curves with ܩଶ –continuity at the end points of the curve using the ܮଶ-norm. The boundary conditions reduce the error near the boundaries and it is anticipated that the weight function improves approximation in the middle of the curve. This is fulfilled by the numerical results and comparisons which show that the proposed method produces smaller error and outperforms existing methods.   
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1.	Introduction 

*The Bézier curves possess very interesting algebraic and geometric properties, and thus, they play a fundamental role in designing and generating curves in a computer-oriented approach. These include algorithmic approach to draw curves, simplicity in evaluation and programming. They become the fundamental basis in any CAD software; see (Höllig and Hörner, 2013; Prautzsch et al., 2013). Data have to be compared, compressed, exchanged, and transferred between different CAD systems. Since different CAD systems use different degrees to represent Bézier curves, thus degree reduction has to be carried out. This issue has been investigated by many researchers. In degree reduction, in addition to the satisfaction of some conditions at the boundaries, the Bézier curve of degree n is to be approximated by a Bézier curve of degree m,  ݉ < ݊. The methods we have require finding the solution of non-linear system of equations. This suggests using numerical methods. (Lutterkort et al., 1999) proved that degree reduction of Bézier curves in the L2 norm equals best Euclidean approximation of Bézier points, see also (Peters and Reif, 2000). These results are generalized to the constrained case by (Ahn et al., 2004), and the discrete cases have been studied in (Ait-Haddou, 2015). Rababah et al. (2007) used the idea of basis transformation between Jacobi and Bernstein to ascertain multi-degree reduction of Bézier curves. L-2 degree reduction of triangular Bézier surfaces with common tangent planes at vertices is considered in (Rababah, 2005). To find G2- 
                                                 * Corresponding Author.  Email Address: rababah@just.edu.jo  

continuity conditions, we are supposed to solve nonlinear equations. The conjugate gradient method has to be utilized to solve the minimization problem. Therein, challenging difficulties are encountered; search directions lose conjugate requiring the search direction to be reset to the steepest descent direction if progress alters or stops. The existing methods to find degree reduction have many issues including: accumulate round-off errors, stability issues, complexity, accuracy, losing conjugacy, requiring the search direction to be set to the steepest descent direction frequently, experiencing ill-conditioned systems, leading to a singularity, and the most challenging difficulty is in applying the methods (difficulty and indirect). (Rababah and Mann, 2013) presented a method to find the G2-degree reduction and linear G1-, G2-, and G3-multiple degree reduction methods for Bézier Curves. These results are expressive to researchers as well as to industrial practitioners. Their examples show that the C2 method fails to reproduce the inner loop of the heart, while their ܥଵ ⁄ଶܩ  method reproduces the loop and provides a better approximation elsewhere along the curve. The G2-degree reduction is also studied by (Lu and Wang, 2006) and the weighted G1-multi-degree in (Rababah and Ibrahim, 2016). Wozny and Lewanowicz (2009) studied multi-degree reduction of Bézier curves with constraints using dual Bernstein basis.  In all existing degree reducing methods, the conditions and free parameters were applied at the end points. So, there is a need to better approximate those parts close to the Centre of the curve. In this paper, we introduce a weight to take care of the Centre of the curve, it is appropriate to consider degree reduction with the weight function w[t] = 2t 
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(1-t), t	 ∈ [0, 1]. The examples show that the proposed methods provide better approximation at the centre of the curves with minimum error and also reproduced these loops correctly better than existing methods. 
2.	Preliminaries	A Bézier curve ܲ(ݐ) of degree n is defined algebraically as follows: 

ܲ(ݐ) =  (ݐ)ܤ 
ୀ ,           0 ≤ ≥ݐ 1,                                                                                        (1) where ܤ(ݐ) = ቀ݊݅ቁ (1 − t)୬ି୧  t୧,        ݅ = 0,1, … , n, are the Bernstein polynomials of degree n, and P0, P1, … Pn are called the Bézier control points or the Bézier points, for more see (Höllig and Hörner, 2013; Prautzsch et al., 2013). The operator ∆ is defined as follows: ∆ = ,    ∆  =  ∆ିଵାଵ − ∆ିଵ,     ݇≥ 1,         ݅ = o, 1, … , n − k. The first derivative of the Bézier curve is given by: ݀݀ݐ ܲ(ݐ) = ݊  ିଵ(ݐ)ିଵܤ ∆

ୀ . Using the above definition of ∆, the k-th derivatives of the Bézier curve are obtained by repeating the previous process k times to get: ݀݀ݐ ܲ(ݐ) = ݊!(݊ − ݇)!  ∆ ܤି(ݐ)ି
ୀ . A formula for the multiplication of the weight function w (t) = 2t	 (1-t) with two Bernstein polynomials is given by: ܤ(ݐ)ܤ(ݐ)1)ݐ2 − (ݐ = 2൫ ൯ቀೕቁቀାାଶାାଵ ቁ , as (m+1) × (n+1)-matrix with weight function as follows: ݃ܩ  The integral of this defines the Gram matrix .(ݐ)ାାଵାାଶܤ = 1)ݐ2(ݐ)ܤ(ݐ)ܤ − ݐ݀(ݐ =ଵ ଶ൫ ൯ቀೕ ቁ(ାାଷ)ቀశశమశೕశభ ቁ ,   ݅ =0, … , ݉, ݆ = 0, … , ݊.                                                          (2) It is clear that the matrix  ܩ, with weight function is real and symmetric. We use mathematical induction to show it is positive definite: Since the entire upper left sub matrices have positive determinants, thus, the matrix  ܩ, is a symmetric positive definite matrix, see the case in (Rababah and Mann, 2013). 

3.	Geometric	continuity	The Bézier curves ܲ and ܴ are Gk-continuous at 
t	= 0,1, see (Rababah and Mann, 2013), if there exists a strictly increasing parameterization (ݐ)ݏ: [0, 1] →[0, 1] with s(0) = 0, s(1) = 1, and 

ܴ()(݅) = ܲ()൫ݏ(݅)൯,   ݅ = 0, 1,       ݆ = 0, 1, … , ݇.       (3) 
4.	Degree	reduction	of	Bézier	curves	We want to find a Bézier curve ܴ(ݐ) of degree m with control points ሼݎሽୀ  that approximates ܲ(ݐ) and satisfy the following two conditions: (1) ܲ and ܴ are G2-continuous at the end points.  (2) The weighted L2-error between ܲ and ܴ is minimum. We can write the two Bézier curves ܲ(ݐ) and ܴ(ݐ) in matrix form as 

ܲ(ݐ) =  (ݐ)ܤ 
ୀ =: (ݐ) ܲ,    ܽ݊݀  ܴܤ

=  (ݐ)ܤ ݎ
ୀ  =: ܴ,        0ܤ ≤ ≥ݐ 1,                                                (4) In the following sections we investigate weighted degree reduction of Bézier curve with G2-continuity at the boundaries. 

5.	Weighted	G2‐Degree	Reduction	

ܲ(ݐ) and ܴ(ݐ) are G2-continuous at t	= 0, 1 if the two curves ܲ and ܴ satisfy the following conditions:  ܴ(݅) = ܲ൫ݏ(݅)൯,         ݅ = 0, 1.                                     (5) ܴᇱ (݅) = (݅)ᇱݏ  ܲᇱ൫ݏ(݅)൯,      ݏᇱ(݅) > 0,        ݅ = 0, 1.     (6)  ܴᇱᇱ (݅) = ൫ݏᇱ(݅)൯ଶ ܲᇱᇱ൫ݏ(݅)൯ (݅)ᇱᇱݏ+ ܲᇱ൫ݏ(݅)൯,           ݏᇱ(݅) > 0,        ݅ = 0, 1.                 (7) These conditions are simplified by substituting  ݏᇱ(݅) = ,ଶߜ (݅)ᇱᇱݏ = ,ߟ  ݅ = 0, (݅)ᇱݏ,1 > 0, to get non-linear equations in ߜ; for example the last equation becomes:  ܴᇱᇱ (0) = ସߜ ܲᇱᇱ(0) ߟ + ܲᇱ(0),         ܴᇱᇱ (1) ଵସߜ= ܲᇱᇱ(1) ଵߟ + ܲᇱ(1),                                                          (8) To avoid the non-linearity, the authors in (Rababah and Mann 2013) required C1-continuity by setting ߜ = 1, ݅ = 0, 1 and G2-continuity. They called this method ܥଵ ⁄ଶܩ ‐multi‐degree	 reduction. We analogously use this substitution for the case of weighted degree reduction. The following equations are obtained by substituting ߜ = ଵߜ  = 1 into equations in (5) to (8) for the control points at either end point of the curve to get:                  ݎ = ݎ              , = ଵݎ    ,                                  (9) =  +  ିଵݎ           ,∆ =  −  ଶݎ   ିଵ,          (10)∆ = ଵݎ2 − ݎ + (ିଵ)(ିଵ) ∆ଶ + (ିଵ) ିଶݎ  ,         (11)ߟ∆ ିଵݎ2= − ݎ + (ିଵ)(ିଵ) ∆ଶିଶ + (ିଵ) ,  are determined by G2-continuity conditions at the boundary; accordingly, the elements of Rm can be decomposed into two parts stated as follows. The boundaries part ܴݎ ିଵ, andݎ , ିଶݎ ,ଶݎ ,ଵݎ ,ݎ ଵ.    (12) The pointsߟିଵ∆ = ,ݎ]  ,ଵݎ ,ଶݎ ,ିଶݎ ,ିଵݎ ] ௧ and the interior part with interior points ܴݎ =
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 ܴ\ܴ = ,ଷݎ] … , ܤ  is decomposed in the same way intoܤ ,ିଷ] ௧. Similarlyݎ  and ܤ . The distance between ܲ and ܴ is measured using weighted L2-norm; therefore, the error term becomes e = ⌡⌠0
1  ||BnPn-BmRm||22t(1-t)dt 

=   ⌡⌠0
1  ||BnPn-BcmRcm-BfmRfm||22t(1-t)dt.      (13)  Differentiating the error with respect to the unknown control points ܴ  we get: ߲ܴ߲ߝ = 2 නฮܤ ܲ − ܤ ܴ − ܤ ܴ ฮܤ 1)ݐ2 − ଵ.ݐ݀(ݐ

  Evaluating the integral and equating to zero gives: ߲ܴ߲ߝ = ,ܩ ܲ − ,ܩ ܴ − ,ܩ ܴ= 0,                                                                                          (14) where ܩ, ≔ ,,(3ܩ … , ݉ − 3; 0, 1, … , ≕,ܩ     ,(݊ ,,(3ܩ … , ݉ − 3; 0, 1, 2, ݉− 2, ݉ − 1, ,ܩ ,(݉ ≔ ,,(3ܩ … , ݉ − 3; 3, … , ݉ − 3), and ܩ,(… ; … ) is the sub-matrix of weighted ܩ, formed by the indicated rows and columns. Note that although we use the same notations for the matrix and submatrices of G as in (Rababah and Mann, 2013), but they do have different values and contents. Differentiating (13) with respect to  ߟ, ݅ = 0, 1,   and equating to zero gives: ߲ߟ߲ߝ = ,ଶܩ) ܲ − ,ଶ;ܩ ܴ − ,ଶ;ܩ ܴ ). =∆ 0,                                                                                      (15) 

ଵߟ߲ߝ߲ = ,ିଶܩ) ܲ − ,ିଶ;ܴܩ − ,ିଶ;ܴܩ ). =ିଵ∆ 0,                                                                                    (16) Where for ݍ = 2, ݉ − ,ܩ :2 ≔ ;ݍ),ܩ 0, 1, … , ≕,;ܩ     ,(݊ ;ݍ),ܩ 0, 1, 2, ݉ − 2, ݉ − 1, ,;ܩ ,(݉ ≔ ;ݍ),ܩ 3, … , ݉ − 3).                               (17) Note that (14) are point valued equations while (15) and (16) are scalar valued equations. Expanding (14) into its x, y, z, … coordinates and joining them together with (15) and (16) yields a system of d(m	-5) + 2 equations in d(m	-5) + 2 unknowns. For the planar curves, the control points of the Bézier curve are expanded into their x and y components. Therefore, the variables of our system of equations are ݎ௫, ,௬ݎ ݇ = 3, … , ݉ − ଶݒ ିଶ respectively. Henceݎ  ଶ andݎ ିଶ be the constant parts ofݒ ଶ andݒ ଵ , respectively. Letߟ  andߟ ିଶ into a constant part and a part involvingݎ ଶ andݎ  ଵ. To express the system in a clear form, we have to decompose each ofߟ  andߟ ,3 = ଵݎ2 − ݎ + (ିଵ)(ିଵ) ∆ଶ,                                       (18) ݒିଶ = ିଵݎ2 − ݎ + (ିଵ)(ିଵ) ∆ଶିଶ.                       (19) The following vectors are defined to express the linear system in explicit form: ܲ = ,௫ൣ … ,௫ ,௬ … , ௬൧௧,     ܴி = ,ଷ௫ݎൣ … ିଷ௫ݎ , ,ଷ௬ݎ … , ିଷ௬ݎ , , ߟ =ଵ ൧௧,     ܴߟ ,௫ݎൣ ,ଵ௫ݎ ,ଶ௫ݒ ିଶ௫ݒ , ିଵ௫ݎ , ,௫ݎ ,௬ݎ ,ଵ௬ݎ ,ଶ௬ݒ ିଶ௬ݒ , ିଵ௬ݎ , ,ାܩ :௬ ൧௧. Let ⨁ be the direct sum and define the matricesݎ = ,ܩ ,ܩ ⨁ ,ାܩ    , = ,ܩ ,ܩ ⨁ =,ାܩ   , ,ܩ ,ܩ ⨁ . Since the Gram matrix ܩ,   is real, symmetric, and positive definite, the matrix ܩ,ி  is positive definite. Define:ܥ = ∆ 00 ିଵ൨∆  ,,(2ܩ ,,(2ܩ (2 ݉ − ݉),ܩ (2 − 2, 2) ݉),ܩ − 2, ݉ − 2)൨ ∆ 00 ,,ܮ ିଵ൨  Further define∆ ,ܮ , ,ܮ    as: ܮ, = ቈ ,ଶܩ ௫∆ ,ଶܩ ିଵ௫∆,ିଶܩ௬∆ ିଵ௬∆,ିଶܩ ,     ܮ, =
ቈ ,ଶ;ܩ ௫∆ ,ଶ;ܩ ିଵ௫∆,ିଶ;ܩ௬∆ ିଵ௬∆,ିଶ;ܩ , 
,ܮ =  ,ଶ;ܩ ௫∆ ,ଶ;ܩ ିଵ௫∆,ିଶ;ܩ௬∆ ିଵ௬∆,ିଶ;ܩ ൩. Further define ܮ,, ,ܮ  by: ܮ, = ቈ ,ଶܩ ௫∆ ,ଶܩ ିଵ௫∆,ିଶܩ௬∆ ିଵ௬∆,ିଶܩ ,     ܮ, =
ቈ ,;ଶܩ ௫∆ ,;ଶܩ ିଵ௫∆,;ିଶܩ௬∆ ିଵ௬∆,;ିଶܩ  , where ܩ, , ,;ܩ , ,;ܩ ݀݊ܽ  are defined in (17). The matrices C, ܮ,, ܮ, , and ܮ,  are obtained from (15) and (16). The coordinate form of the expansion of  (14) becomes: 

,ிܩ ܴி = ,ܩ ܲ ,ܩ − ܴ ,              (20) Where ܩ, = ቈܩ;శܮ; , ,ܩ = ቈܩ;శܮ;  , ,ிܩ
= ൦ܩ;శ ݊݉(݉ − 1) ;ܮ

൫ܮ; ൯௧ ݊݉(݉ − 1) ܥ ൪,  
From (20) we can find our unknowns as: ܴி = ,ிܩ) )ିଵ൫ܩ, ܲ ,ܩ − ܴ  ൯.               (21) 

6.	Examples	and	comparisons	In this section, four examples are given to illustrate the effectiveness of the proposed method. The examples demonstrate the great benefits of using weighted G2-degree reduction. 
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